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Diffraction grating single-shot correlation system for

measurement of picosecond laser pulses
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We study and experimentally demonstrate a sensitive single-shot correlation system in which only a diffrac-
tion grating is used to produce a transverse time delay (TTD) in the reference pulse. The mechanism of
the TTD introduced by the grating and the formation of the relative time delay (RTD) in the noncollinear
correlation system are analyzed in detail. By using our system, we successfully measured the temporal
duration of picosecond laser pulses, and a time resolution of ∼0.047 ps is obtained at 1047 nm. The impact
of the grating dispersion and the second harmonic beam walk-off effect on the measurement are considered.
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Since the development of the mode-locked Nd:glass laser,
a number of methods have been proposed to measure the
duration of ultrashort laser pulses[1−7]. One of the meth-
ods to measure single ultrashort laser pulses is to use a
commercial streak camera[1], which has the advantage of
obtaining direct information of the pulse. However, it
is too expensive to monitor the pulse in this way, and
the time resolution is restricted to several picoseconds
at present. As another method, two-photon fluorescence
(TPF) technique has often been used to measure the pi-
cosecond laser pulses[2]. The TPF method has a time
resolution of below picosecond, but it has a highly dis-
turbing background signal, which does not allow weak
pulses near the main pulse to be seen. Later, Gyuzalian
et al. used a noncollinear second-harmonic generation
(SHG) technique to transform the temporal shape of the
pulse into a spatial shape which could be analyzed by
a spatial detector[4,5]. Though this technique can offer
very high temporal resolution, the long record tempo-
ral range of tens to hundreds of picoseconds is difficult to
satisfy in single-shot correlation measurements since they
require both very large nonlinear crystal apertures and
large beam crossing angles. To complement this, Wyatt
et al. have used an original method of measuring pulses
of subnanosecond to picosecond duration, using a diffrac-
tion grating to produce a tailored, expanded beam with
a differential time delay along its expanded axis[6]. How-
ever, the efficiency of the grating at grazing incidence is
very low. In succession, Ross et al. proposed a technique
for measuring the pulse duration of a single picosecond
pulse at 249 nm by using a grating operating in the first
order to introduce a variable delay across the beam, but
the mechanism of the transverse time delay (TTD) in-
troduced by the grating and the formation of the relative
time delay (RTD) in the noncollinear correlation have
not been fully explored[7].

In this letter, we study and experimentally demonstrate
a single-shot correlation system in which a diffraction
grating is used to produce a TTD in the reference pulse.

The mechanism of the TTD introduced by the grating
and the formation of the RTD in the noncollinear corre-
lation system are analyzed in detail. To measure a wider
range of pulse duration sensitively with a moderate-sized
nonlinear crystal aperture, different grating, different in-
cident angle, and different order of diffraction are sug-
gested. In our system a low loss beam-expanding tele-
scope is used to expand (if needed) the beam and a high
efficiency diffraction grating is mainly used to introduce
TTD. This results in a considerable increase of sensi-
tivity and a wider duration measurement range with a
moderate nonlinear crystal aperture size. By using this
system, we successfully measure the temporal duration
of picosecond pulses output from a Jaguar-QCW laser
(Time Bandwidth Inc). The impact of the grating dis-
persion and the second harmonic (SH) beam walk-off ef-
fect on the measurement is also considered.

The basic idea of our method is to transform the tem-
poral shape of the pulse into a spatial shape which could
be analyzed by a spatial detector. The laser pulse enter-
ing into the correlation system is split into two beams by
a beam splitter (BS); one beam is used to provide a refer-
ence pulse and the other beam is used to provide a signal
pulse. A diffraction grating is used to produce a TTD in
the reference pulse. A delay line is inserted in the path
of the signal beam to ensure the temporal and spatial
overlap of the two pulses in a nonlinear crystal. Then
the two beams cross in the nonlinear crystal in order to
generate a noncollinear SH signal, which is recorded by
a linear array of charge-coupled device (CCD).

A standard diffraction grating is used to introduce a tilt
in the pulse front with respect to the phase front which
is perpendicular to the propagation direction, as shown
in Fig. 1. The tilt of the pulse front causes a TTD across
the spatial extent of the beam.

In this case, the grating equation is

d(sin i + sin θ) = mλ, (1)
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Fig. 1. Formation of the transverse time delay in a beam
diffracted from a grating.

where d is the grating constant, i is the angle of incidence,
θ is the angle of diffraction, m is the order of diffraction,
and λ is the mean wavelength of the laser pulse. For this
condition, we can deduce the total TTD across the beam
with

∆τ =
mλDi

dc cos i
=

mλDo

dc cos θ
, (2)

where Di is the incident beam diameter, Do is the output
beam diameter, and c is the velocity of light in vacuum.
Obviously, if we choose different grating with respect to
the grating constant, different angle of incidence, and dif-
ferent order of diffraction, the total TTD across the beam
in a very wide range can be obtained.

The transform-limited pulse diffracted by the grating
becomes lengthened due to the temporal chirp. The gen-
eral description of the effect of temporal chirp is based on
the calculation of the phase of a light wave upon propa-
gation. If the second derivative of the phase φ(ω), that
is, the group delay dispersion (GDD) is not zero, then
the pulse is temporally chirped and, hence, lengthened.
And GDD can be expressed as[8,9]

GDD =
d2φ

dω2
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where L is the distance between the source of angular
dispersion and the position of observation along the ray
of the central frequency ω0, and θ′ is the angle between
the rays of ω0 and an arbitrary frequency ω. Assuming
a transform-limited Gaussian input pulse, the length of
the output pulse is

τ ′

p = τp

√

1 +
(

∆ω2
GDD

4 ln 2

)2

,

where ∆ω is the full-width at half-maximum (FWHM)
bandwidth of the pulse and τp is the length of the in-
put pulse. If a 12-ps, 1.047-µm pulse is diffracted by
a 1200-l/mm grating, the length of the output pulse is
about 12.0004 ps. The effect of pulse lengthening is too
small to be considered. The longer the laser pulse is, the
smaller the magnitude of pulse lengthening is. Thus, the
dispersive pulse stretching can be neglected for tens of
picoseconds laser pulses.

We use Fig. 2 to obtain the intensity of the SH signal
produced at a distance x from the center of the SH beam.

Let I1(t) and I2(t) be the temporal intensity shapes of
the incident pulses and S(x) be the spatial shape of the
SH signal. As the detector integrates the SH signal over
a longer time than the pulse width, we finally obtain a
shape S(x) proportional to the second-order correlation
function G2(τ) of the incident pulse:

S(x) ∝

∫ +∞

−∞

I1(t − τ − τ ′)I2(t + τ)dt (3)

=

∫ +∞

−∞

I1[t
′
− (2τ + τ ′)]I2(t

′)dt′ = G2(2τ + τ ′),

where

τ =
nx sinφ

c
(RTD from crossing interaction), (4)

τ ′ =
∆τ · x cosφ

Do

=
mλx cosφ

dc
√

1 − (mλ/d − sin i)2

(RTD from diffraction grating), (5)

and 2φ is the crossing angle of the two incident beams in
the crystal.

Obviously, both the crossing interaction and the
diffraction grating can be used to introduce RTD. As can
be seen from Fig. 3, if the beam diameter is large enough,
the RTD is in direct proportion with the crystal aper-
ture, and the RTD due to crossing interaction is much
smaller than that from diffraction grating for the same
nonlinear crystal aperture size. So we can say that the
crossing interaction is mainly used to ensure background-
free measurement and the grating is primarily used to
introduce RTD. Figure 4 is given by calculating the RTD
introduced by gratings for a certain crystal aperture size.
It is shown that, to measuring broader pulses, one should
use gratings with smaller grating constant and smaller
incident angle for a moderate nonlinear crystal aperture
size.

The experimental setup is schematically shown in Fig.
5. We use a Jaguar-QCW laser that produces about
12-ps, 500-µJ pulses at 1047 nm with 10-Hz recurrence.
The output beam of the laser is properly expanded and
collimated before it enters the pulse correlation system
to ensure that the spatial intensity profile of the pulse is
uniform across the crystal aperture. The laser pulse en-
tering into the system is split into two beams by a BS; one
beam is used to provide a reference pulse and the other
beam is used to provide a signal pulse. The reference
pulse impinges on a diffraction grating of 1200 l/mm,

Fig. 2. Interaction of two beams in a nonlinear crystal.
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Fig. 3. Calculated RTD as a function of crystal aperture for
different sources.

Fig. 4. Calculated RTD introduced by different gratings.

Fig. 5. Experimental setup of the correlation system.

and the incident angle is set to ∼ 45◦, resulting in a
diffraction efficiency of ∼ 80% in the first order. A delay
line is inserted in the path of the signal beam to ensure
the temporal and spatial overlap of the two pulses in
a nonlinear crystal (KDP). The crystal cut (44.5◦) and
the crystal orientation are designed to satisfy the type
I phase-matching condition for noncollinear SHG. The
crossing angle of the two beams is set to ∼ 14◦ in the
crystal, although this angle is not critical. A BG18 filter
selects the signal at 524 nm and stops the incident pulses
at 1047 nm. The spatial distribution of the noncollinear
SH signal is recorded by a linear array of CCD, and fi-
nally displayed on an oscilloscope screen.

In out measurement, we need to calibrate the scale of
the time-to-space conversion. Calibration is performed
by introduction of a known time delay ∆t into the signal
pulse and measurement of the transverse spatial displace-
ment ∆x of the SH signal. The width (FWHM) Lx of
the spatial function S(x) is connected with the FWHM
tp of the SH signal pulse by[5]

Fig. 6. Single-shot correlation curves on the oscilloscope (a)
before and (b) after a time delay ∆t =14.467 ps is introduced.

tp =
Lx

K
·

∆t

∆x
, (6)

where K is a form factor depending on the incident pulse
shape (K=1.543 for a sech2 pulse, K=1.414 for a Gaus-
sian pulse)[10].

A micrometer with a resolution of 0.01 mm (corre-
sponding to ∼ 33 fs in vacuum) is used to introduce a
precise time delay ∆t into the signal pulse. As shown in
Fig. 6, when we introduce a time delay ∆t = 14.467 ps
into the signal pulse, the peak of the SH signal moves ∆x
= 680 µs. So we obtain the calibration factor ∆t/∆x =
21.275 fs/µs. The FWHM of a typical recorded SH sig-
nal profile on the oscilloscope screen is measured as Lx=
800 µs, which corresponds to an actual pulse duration of
∼11.03 ps, assuming a sech2 pulse shape. This single-
shot measurement is in good agreement with pulse width
determination carried out previously (∼ 11.34 ps).

As pointed out before, using different grating with re-
spect to the grating constant, different angle of inci-
dence, and different order of diffraction, pulse duration
in a very wide range can be measured without an un-
duly large nonlinear crystal aperture size. For shorter
pulses, the main limitation will arise from the walk-off
effect in the nonlinear crystal. In uniaxial crystals, there
exists a walk-off angle α between the k-vector and the
Pointing vector of the extraordinary beam. For an in-
teraction length l, this angle leads to a broadening of
the SH beam of ∆z = l × sin α. In our experiment, we
work with a KDP with thickness of l = 2 mm, cross-
ing angle 2φ ≈ 14◦, phase matching angle θ ≈ 16◦, and
walk-off angle α ≈ 0.88◦. The SH beam broadening of
∆z ≈ 0.03 mm corresponds to a reduced accuracy in the
full pulse duration of ∼ 0.1 ps.

The beam diffracted by the grating becomes divergent
due to the finite spectral bandwidth and the angular dis-
persion. This divergence may influence the process of
SHG in the nonlinear crystal and should be taken into ac-
count. Assuming a Gaussian-shaped pulse of a time dura-
tion τp, it is easy to calculate the divergence of the beam

in the plane of incidence, which is due to dispersion[11]

∆θdisp = 0.44
λ2

cdτp
. (7)

Equation (7) may help the evaluation of the divergence
due to the diffraction grating. For example, if the pulse
width is 12 ps at 1.047-µm wavelength and we use a 1200-
l/mm grating, the divergence is only about 0.5788 arcsec.
This value is acceptable for most available nonlinear crys-
tals. The shorter the laser pulse, the wider the spectral



1056 CHINESE OPTICS LETTERS / Vol. 8, No. 11 / November 10, 2010

bandwidth, and the higher the divergence. Thus, the
divergence due to dispersion can be kept low if one em-
ploys gratings with constant d inversely proportional to
the pulse width.

The temporal resolution for 2-mm KDP limited by the
group velocity dispersion is calculated to be 6.77 fs at
1047 nm. The CCD we used consists of 4096 pieces of
active elements with a dimension of 10 × 10 (µm). This
spatial resolution provides a temporal resolution of 33 fs.
So a temporal resolution of ∼ 0.047 ps for our system
is determined by considering the dispersion in KDP, the
CCD spatial resolution, and a time-based calibration.

In conclusion, we have studied and demonstrated ex-
perimentally a sensitive single-shot pulse correlation sys-
tem in which a diffraction grating is used to produce a
TTD in the reference pulse. The mechanism of the TTD
introduced by the grating and the formation of the RTD
in the noncollinear correlation system are analyzed in
detail. The crossing interaction is mainly used to ensure
background-free measurement and the diffraction grating
is primarily used to introduce RTD in our noncollinear
correlation system. And the pulse duration measure-
ment coverage can be extended by employing appropri-
ate grating, incident angle, and order of diffraction. So
this system can be used to produce sensitive background-
free correlation function for a single incident pulse in a
wide duration coverage without an unduly large nonlin-
ear crystal aperture. By using this system, we success-
fully measure the temporal duration of picosecond laser
pulses, and a time resolution of ∼ 0.047 ps is obtained at
1047 nm. This system can also be used to optimize the

alignment of our optical parametric chirped pulse ampli-
fication (OPCPA) grating compressor.

This work was supported by the National “863” Pro-
gram of China under Grant No. 2009AA8044010.
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